James Gregson's Website

Nov 07, 2019

Load/Save Wavefront .OBJ Files in Python

It's pretty useful to be able to load meshes when doing graphics. One format that is nearly ubiquitous are Wavefront .OBJ files, due largely to their good features-to-complexity ratio. Sure there are better formats, but when you just want to get a mesh into a program it's hard to beat .obj which can be imported and exported from just about anyhwere.

The code below loads and saves .obj files, including material assignments (but not material parameters), normals, texture coordinates and faces of any number of vertices. It supports faces with/without either/both of normals and texture coordinates and (if you can accept 6D vertices) also suports per-vertex colors (a non-standard extension sometimes used for debugging in mesh processing). Faces without either normals or tex-coords assign the invalid value -1 for these entries.

From the returned object, it is pretty easy to do things like sort faces by material indices, split vertices based on differing normals or along texture boundaries and so on. It also has the option to tesselate non-triangular faces, although this only works for convex faces (you should only be using convex faces anyway though!).

# wavefront.py
import numpy as np

class WavefrontOBJ:
    def __init__( self, default_mtl='default_mtl' ):
        self.path      = None               # path of loaded object
        self.mtllibs   = []                 # .mtl files references via mtllib
        self.mtls      = [ default_mtl ]    # materials referenced
        self.mtlid     = []                 # indices into self.mtls for each polygon
        self.vertices  = []                 # vertices as an Nx3 or Nx6 array (per vtx colors)
        self.normals   = []                 # normals
        self.texcoords = []                 # texture coordinates
        self.polygons  = []                 # M*Nv*3 array, Nv=# of vertices, stored as vid,tid,nid (-1 for N/A)

def load_obj( filename: str, default_mtl='default_mtl', triangulate=False ) -> WavefrontOBJ:
    """Reads a .obj file from disk and returns a WavefrontOBJ instance

    Handles only very rudimentary reading and contains no error handling!

    Does not handle:
        - relative indexing
        - subobjects or groups
        - lines, splines, beziers, etc.
    """
    # parses a vertex record as either vid, vid/tid, vid//nid or vid/tid/nid
    # and returns a 3-tuple where unparsed values are replaced with -1
    def parse_vertex( vstr ):
        vals = vstr.split('/')
        vid = int(vals[0])-1
        tid = int(vals[1])-1 if len(vals) > 1 and vals[1] else -1
        nid = int(vals[2])-1 if len(vals) > 2 else -1
        return (vid,tid,nid)

    with open( filename, 'r' ) as objf:
        obj = WavefrontOBJ(default_mtl=default_mtl)
        obj.path = filename
        cur_mat = obj.mtls.index(default_mtl)
        for line in objf:
            toks = line.split()
            if not toks:
                continue
            if toks[0] == 'v':
                obj.vertices.append( [ float(v) for v in toks[1:]] )
            elif toks[0] == 'vn':
                obj.normals.append( [ float(v) for v in toks[1:]] )
            elif toks[0] == 'vt':
                obj.texcoords.append( [ float(v) for v in toks[1:]] )
            elif toks[0] == 'f':
                poly = [ parse_vertex(vstr) for vstr in toks[1:] ]
                if triangulate:
                    for i in range(2,len(poly)):
                        obj.mtlid.append( cur_mat )
                        obj.polygons.append( (poly[0], poly[i-1], poly[i] ) )
                else:
                    obj.mtlid.append(cur_mat)
                    obj.polygons.append( poly )
            elif toks[0] == 'mtllib':
                obj.mtllibs.append( toks[1] )
            elif toks[0] == 'usemtl':
                if toks[1] not in obj.mtls:
                    obj.mtls.append(toks[1])
                cur_mat = obj.mtls.index( toks[1] )
        return obj

def save_obj( obj: WavefrontOBJ, filename: str ):
    """Saves a WavefrontOBJ object to a file

    Warning: Contains no error checking!

    """
    with open( filename, 'w' ) as ofile:
        for mlib in obj.mtllibs:
            ofile.write('mtllib {}\n'.format(mlib))
        for vtx in obj.vertices:
            ofile.write('v '+' '.join(['{}'.format(v) for v in vtx])+'\n')
        for tex in obj.texcoords:
            ofile.write('vt '+' '.join(['{}'.format(vt) for vt in tex])+'\n')
        for nrm in obj.normals:
            ofile.write('vn '+' '.join(['{}'.format(vn) for vn in nrm])+'\n')
        if not obj.mtlid:
            obj.mtlid = [-1] * len(obj.polygons)
        poly_idx = np.argsort( np.array( obj.mtlid ) )
        cur_mat = -1
        for pid in poly_idx:
            if obj.mtlid[pid] != cur_mat:
                cur_mat = obj.mtlid[pid]
                ofile.write('usemtl {}\n'.format(obj.mtls[cur_mat]))
            pstr = 'f '
            for v in obj.polygons[pid]:
                # UGLY!
                vstr = '{}/{}/{} '.format(v[0]+1,v[1]+1 if v[1] >= 0 else 'X', v[2]+1 if v[2] >= 0 else 'X' )
                vstr = vstr.replace('/X/','//').replace('/X ', ' ')
                pstr += vstr
            ofile.write( pstr+'\n')

A function that round-trips the loader is shown below, the resulting mesh dump.obj can be loaded into Blender and show the same material ids and texture coordinates. If you inspect it (and remove comments) you will see that the arrays match the string in the function:

from wavefront import *

def obj_load_save_example():
    data = '''
# slightly edited blender cube
mtllib cube.mtl
v 1.000000 1.000000 -1.000000
v 1.000000 -1.000000 -1.000000
v 1.000000 1.000000 1.000000
v 1.000000 -1.000000 1.000000
v -1.000000 1.000000 -1.000000
v -1.000000 -1.000000 -1.000000
v -1.000000 1.000000 1.000000
v -1.000000 -1.000000 1.000000
vt 0.625000 0.500000
vt 0.875000 0.500000
vt 0.875000 0.750000
vt 0.625000 0.750000
vt 0.375000 0.000000
vt 0.625000 0.000000
vt 0.625000 0.250000
vt 0.375000 0.250000
vt 0.375000 0.250000
vt 0.625000 0.250000
vt 0.625000 0.500000
vt 0.375000 0.500000
vt 0.625000 0.750000
vt 0.375000 0.750000
vt 0.125000 0.500000
vt 0.375000 0.500000
vt 0.375000 0.750000
vt 0.125000 0.750000
vt 0.625000 1.000000
vt 0.375000 1.000000
vn 0.0000 0.0000 -1.0000
vn 0.0000 1.0000 0.0000
vn 0.0000 0.0000 1.0000
vn -1.0000 0.0000 0.0000
vn 1.0000 0.0000 0.0000
vn 0.0000 -1.0000 0.0000
usemtl mat1
# no texture coordinates
f 6//1 5//1 1//1 2//1
usemtl mat2
f 1/5/2 5/6/2 7/7/2 3/8/2
usemtl mat3
f 4/9/3 3/10/3 7/11/3 8/12/3
usemtl mat4
f 8/12/4 7/11/4 5/13/4 6/14/4
usemtl mat5
f 2/15/5 1/16/5 3/17/5 4/18/5
usemtl mat6
# no normals
f 6/14 2/4 4/19 8/20
    '''
    with open('test_cube.obj','w') as obj:
        obj.write( data )
    obj = load_obj( 'test_cube.obj' )
    save_obj( obj, 'dump.obj' )

if __name__ == '__main__':
    obj_load_save_example()

Hope it's useful!

Nov 05, 2019

Useful Mesh Functions in Python

These are collections of functions that I end up re-implementing frequently.

import numpy as np

def manifold_mesh_neighbors( tris: np.ndarray ) -> np.ndarray:
    """Returns an array of triangles neighboring each triangle

    Args:
        tris (Nx3 int array): triangle vertex indices

    Returns:
        nbrs (Nx3 int array): neighbor triangle indices,
            or -1 if boundary edge
    """
    if tris.shape[1] != 3:
        raise ValueError('Expected a Nx3 array of triangle vertex indices')

    e2t = {}
    for idx,(a,b,c) in enumerate(tris):
        e2t[(b,a)] = idx
        e2t[(c,b)] = idx
        e2t[(a,c)] = idx

    nbr = np.full(tris.shape,-1,int)
    for idx,(a,b,c) in enumerate(tris):
        nbr[idx,0] = e2t[(a,b)] if (a,b) in e2t else -1
        nbr[idx,1] = e2t[(b,c)] if (b,c) in e2t else -1
        nbr[idx,2] = e2t[(c,a)] if (c,a) in e2t else -1
    return nbr

if __name__ == '__main__':
    tris = np.array((
        (0,1,2),
        (0,2,3)
    ),int)
    nbrs = manifold_mesh_neighbors( tris )

    tar = np.array((
        (-1,-1,1),
        (0,-1,-1)
    ),int)
    if not np.allclose(nbrs,tar):
        raise ValueError('uh oh.')

Nov 04, 2019

Useful Transformation Functions in Python

These are collections of functions that I end up re-implementing frequently.

from typing import *
import numpy as np

def closest_rotation( M: np.ndarray ):
    U,s,Vt = np.linalg.svd( M[:3,:3] )
    if np.linalg.det(U@Vt) < 0:
        Vt[2] *= -1.0
    return U@Vt

def mat2quat( M: np.ndarray ):
    if np.abs(np.linalg.det(M[:3,:3])-1.0) > 1e-5:
        raise ValueError('Matrix determinant is not 1')
    if np.abs( np.linalg.norm( M[:3,:3].T@M[:3,:3] - np.eye(3)) ) > 1e-5:
        raise ValueError('Matrix is not orthogonal')
    w = np.sqrt( 1.0 + M[0,0]+M[1,1]+M[2,2])/2.0
    x = (M[2,1]-M[1,2])/(4*w)
    y = (M[0,2]-M[2,0])/(4*w)
    z = (M[1,0]-M[0,1])/(4*w)
    return np.array((x,y,z,w),float)

def quat2mat( q: np.ndarray ):
    qx,qy,qz,qw = q/np.linalg.norm(q)
    return np.array((
        (1 - 2*qy*qy - 2*qz*qz,     2*qx*qy - 2*qz*qw,     2*qx*qz + 2*qy*qw),
        (    2*qx*qy + 2*qz*qw, 1 - 2*qx*qx - 2*qz*qz,     2*qy*qz - 2*qx*qw),
        (    2*qx*qz - 2*qy*qw,         2*qy*qz + 2*qx*qw, 1 - 2*qx*qx - 2*qy*qy),
    ))

if __name__ == '__main__':
    for i in range( 1000 ):
        q = np.random.standard_normal(4)
        q /= np.linalg.norm(q)
        A = quat2mat( q )
        s = mat2quat( A )
        if np.linalg.norm( s-q ) > 1e-6 and np.linalg.norm( s+q ) > 1e-6:
            raise ValueError('uh oh.')

        R = closest_rotation( A+np.random.standard_normal((3,3))*1e-6 )
        if np.linalg.norm(A-R) > 1e-5:
            print( np.linalg.norm( A-R ) )
            raise ValueError('uh oh.')

Nov 03, 2019

Mesh Processing in Python: Implementing ARAP deformation

Python is a pretty nice language for prototyping and (with numpy and scipy) can be quite fast for numerics but is not great for algorithms with frequent tight loops. One place I run into this frequently is in graphics, particularly applications involving meshes.

Not much can be done if you need to frequently modify mesh structure. Luckily, many algorithms operate on meshes with fixed structure. In this case, expressing algorithms in terms of block operations can be much faster. Actually implementing methods in this way can be tricky though.

To gain more experience in this, I decided to try implementing the As-Rigid-As-Possible Surface Modeling mesh deformation algorithm in Python. This involves solving moderately sized Laplace systems where the right-hand-side involves some non-trivial computation (per-vertex SVDs embedded within evaluation of the Laplace operator). For details on the algorithm, see the link.

As it turns out, the entire implementation ended up being just 99 lines and solves 1600 vertex problems in just under 20ms (more on this later). Full code is available.

Building the Laplace operator

ARAP uses cotangent weights for the Laplace operator in order to be relatively independent of mesh grading. These weights are functions of the angles opposite the edges emanating from each vertex. Building this operator using loops is slow but can be sped up considerably by realizing that every triangle has exactly 3 vertices, 3 angles and 3 edges. Operations can be evaluated on triangles and accumulated to edges.

Here's the Python code for a cotangent Laplace operator:

from typing import *
import numpy as np
import scipy.sparse as sparse
import scipy.sparse.linalg as spla

def build_cotan_laplacian( points: np.ndarray, tris: np.ndarray ):
    a,b,c = (tris[:,0],tris[:,1],tris[:,2])
    A = np.take( points, a, axis=1 )
    B = np.take( points, b, axis=1 )
    C = np.take( points, c, axis=1 )

    eab,ebc,eca = (B-A, C-B, A-C)
    eab = eab/np.linalg.norm(eab,axis=0)[None,:]
    ebc = ebc/np.linalg.norm(ebc,axis=0)[None,:]
    eca = eca/np.linalg.norm(eca,axis=0)[None,:]

    alpha = np.arccos( -np.sum(eca*eab,axis=0) )
    beta  = np.arccos( -np.sum(eab*ebc,axis=0) )
    gamma = np.arccos( -np.sum(ebc*eca,axis=0) )

    wab,wbc,wca = ( 1.0/np.tan(gamma), 1.0/np.tan(alpha), 1.0/np.tan(beta) )
    rows = np.concatenate((   a,   b,   a,   b,   b,   c,   b,   c,   c,   a,   c,   a ), axis=0 )
    cols = np.concatenate((   a,   b,   b,   a,   b,   c,   c,   b,   c,   a,   a,   c ), axis=0 )
    vals = np.concatenate(( wab, wab,-wab,-wab, wbc, wbc,-wbc,-wbc, wca, wca,-wca, -wca), axis=0 )
    L = sparse.coo_matrix((vals,(rows,cols)),shape=(points.shape[1],points.shape[1]), dtype=float).tocsc()
    return L

Inputs are float \(3 \times N_{verts}\) and integer \(N_{tris} \times 3\) arrays for vertices and triangles respectively. The code works by making arrays containing vertex indices and positions for all triangles, then computes and normalizes edges and finally computes angles and cotangents. Once the cotangents are available, initialization arrays for a scipy.sparse.coo_matrix are constructed and the matrix built. The coo_matrix is intended for finite-element matrices so it accumulates rather than overwrites duplicate values. The code is definitely faster and most likely fewer lines than a loop based implementation.

Evaluating the Right-Hand-side

The Laplace operator is just a warm-up exercise compared to the right-hand-side computation. This involves:

  • For every vertex, collecting the edge-vectors in its one-ring in both original and deformed coordinates
  • Computing the rotation matrices that optimally aligns these neighborhoods, weighted by the Laplacian edge weights, per-vertex. This involves a SVD per-vertex.
  • Rotating the undeformed neighborhoods by the per-vertex rotation and summing the contributions.

In order to vectorize this, I constructed neighbor and weight arrays for the Laplace operator. These store the neighboring vertex indices and the corresponding (positive) weights from the Laplace operator. A catch is that vertices have different numbers of neighbors. To address this I use fixed sized arrays based on the maximum valence in the mesh. These are initialized with default values of the vertex ids and weights of zero so that unused vertices contribute nothing and do not affect matrix structure.

To compute the rotation matrices, I used some index magic to accumulate the weighted neighborhoods and rely on numpy's batch SVD operation to vectorize over all vertices. Finally, I used the same index magic to rotate the neighborhoods and accumulate the right-hand-side.

The code to accumulate the neighbor and weight arrays is:

def build_weights_and_adjacency( points: np.ndarray, tris: np.ndarray, L: Optional[sparse.csc_matrix]=None ):
    L = L if L is not None else build_cotan_laplacian( points, tris )
    n_pnts, n_nbrs = (points.shape[1], L.getnnz(axis=0).max()-1)
    nbrs = np.ones((n_pnts,n_nbrs),dtype=int)*np.arange(n_pnts,dtype=int)[:,None]
    wgts = np.zeros((n_pnts,n_nbrs),dtype=float)

    for idx,col in enumerate(L):
        msk = col.indices != idx
        indices = col.indices[msk]
        values  = col.data[msk]
        nbrs[idx,:len(indices)] = indices
        wgts[idx,:len(indices)] = -values

Rather than break down all the other steps individually, here is the code for an ARAP class:

class ARAP:
    def __init__( self, points: np.ndarray, tris: np.ndarray, anchors: List[int], anchor_weight: Optional[float]=10.0, L: Optional[sparse.csc_matrix]=None ):
        self._pnts    = points.copy()
        self._tris    = tris.copy()
        self._nbrs, self._wgts, self._L = build_weights_and_adjacency( self._pnts, self._tris, L )

        self._anchors = list(anchors)
        self._anc_wgt = anchor_weight
        E = sparse.dok_matrix((self.n_pnts,self.n_pnts),dtype=float)
        for i in anchors:
            E[i,i] = 1.0
        E = E.tocsc()
        self._solver = spla.factorized( ( self._L.T@self._L + self._anc_wgt*E.T@E).tocsc() )

    @property
    def n_pnts( self ):
        return self._pnts.shape[1]

    @property
    def n_dims( self ):
        return self._pnts.shape[0]

    def __call__( self, anchors: Dict[int,Tuple[float,float,float]], num_iters: Optional[int]=4 ):
        con_rhs = self._build_constraint_rhs(anchors)
        R = np.array([np.eye(self.n_dims) for _ in range(self.n_pnts)])
        def_points = self._solver( self._L.T@self._build_rhs(R) + self._anc_wgt*con_rhs )
        for i in range(num_iters):
            R = self._estimate_rotations( def_points.T )
            def_points = self._solver( self._L.T@self._build_rhs(R) + self._anc_wgt*con_rhs )
        return def_points.T

    def _estimate_rotations( self, def_pnts: np.ndarray ):
        tru_hood = (np.take( self._pnts, self._nbrs, axis=1 ).transpose((1,0,2)) - self._pnts.T[...,None])*self._wgts[:,None,:]
        rot_hood = (np.take( def_pnts,   self._nbrs, axis=1 ).transpose((1,0,2)) - def_pnts.T[...,None])

        U,s,Vt = np.linalg.svd( rot_hood@tru_hood.transpose((0,2,1)) )
        R = U@Vt
        dets = np.linalg.det(R)
        Vt[:,self.n_dims-1,:] *= dets[:,None]
        R = U@Vt
        return R

    def _build_rhs( self, rotations: np.ndarray ):
        R = (np.take( rotations, self._nbrs, axis=0 )+rotations[:,None])*0.5
        tru_hood = (self._pnts.T[...,None]-np.take( self._pnts, self._nbrs, axis=1 ).transpose((1,0,2)))*self._wgts[:,None,:]
        rhs = np.sum( (R@tru_hood.transpose((0,2,1))[...,None]).squeeze(), axis=1 )
        return rhs

    def _build_constraint_rhs( self, anchors: Dict[int,Tuple[float,float,float]] ):
        f = np.zeros((self.n_pnts,self.n_dims),dtype=float)
        f[self._anchors,:] = np.take( self._pnts, self._anchors, axis=1 ).T
        for i,v in anchors.items():
            if i not in self._anchors:
                raise ValueError('Supplied anchor was not included in list provided at construction!')
            f[i,:] = v
        return f

The indexing was tricky to figure out. Error handling and input checking can obviously be improved. Something I'm not going into are the handling of anchor vertices and the overall quadratic forms that are being solved.

So does it Work?

Yes. Here is a 2D equivalent to the bar example from the paper:

import time
import numpy as np
import matplotlib.pyplot as plt

import arap

def grid_mesh_2d( nx, ny, h ):
    x,y = np.meshgrid( np.linspace(0.0,(nx-1)*h,nx), np.linspace(0.0,(ny-1)*h,ny))
    idx = np.arange(nx*ny,dtype=int).reshape((ny,nx))
    quads = np.column_stack(( idx[:-1,:-1].flat, idx[1:,:-1].flat, idx[1:,1:].flat, idx[:-1,1:].flat ))
    tris  = np.vstack((quads[:,(0,1,2)],quads[:,(0,2,3)]))
    return np.row_stack((x.flat,y.flat)), tris, idx

nx,ny,h = (21,5,0.1)
pnts, tris, ix = grid_mesh_2d( nx,ny,h )

anchors = {}
for i in range(ny):
    anchors[ix[i,0]]    = (       0.0,           i*h)
    anchors[ix[i,1]]    = (         h,           i*h)
    anchors[ix[i,nx-2]] = (h*nx*0.5-h,  h*nx*0.5+i*h)
    anchors[ix[i,nx-1]] = (  h*nx*0.5,  h*nx*0.5+i*h)

deformer = arap.ARAP( pnts, tris, anchors.keys(), anchor_weight=1000 )

start = time.time()
def_pnts = deformer( anchors, num_iters=2 )
end = time.time()

plt.triplot( pnts[0], pnts[1], tris, 'k-', label='original' )
plt.triplot( def_pnts[0], def_pnts[1], tris, 'r-', label='deformed' )
plt.legend()
plt.title('deformed in {:0.2f}ms'.format((end-start)*1000.0))
plt.show()

The result of this script is the following:

As Rigid As Possible deformation

This is qualitatively quite close to the result for two iterations in Figure 3 of the ARAP paper. Note that the timings may be a bit unreliable for such a small problem size.

A corresponding result for 3D deformations is here (note that this corrects an earlier bug in rotation computations for 3D):

As Rigid As Possible deformation in 3D

Performance

By using SciPy's sparse matrix functions and pre-factoring the systems, the solves are very quick. This is because SciPy uses optimized libraries for the factorization and backsolves. Prefactoring the system matrices for efficiency was a key point of the paper and it's nice to be able to take advantage of this from Python.

To look at the breakdown of time taken for right-hand-side computation and solves, I increased the problem size to 100x25, corresponding to a 2500 vertex mesh. Total time for two iterations was roughly 35ms, of which 5ms were the linear solves and 30ms were the right-hand-side computations. So the right-hand-side computation completely dominates the overall time. That said, using a looping approach, I could not even build the Laplace matrix in 30ms to say nothing of building the right-hand-side three times over, so the vectorization has paid off. More profiling would be needed to say if the most time-consuming portion is the SVDs or the indexing but overall I consider it a success to implement a graphics paper that has been cited more than 700 times in 99 lines of Python.

Aug 14, 2019

Blender Python Integration

Some random stuff for working with blender programmatically:

Switch between object and edit mode

bpy.ops.object.mode_set(mode='OBJECT')
bpy.ops.object.mode_set(mode='EDIT')

List selected objects

sel_obj = bpy.context.selected_objects
for obj in sel_obj:
    print( obj.name )

Deselect selected objects

In Object Mode:

for obj in bpy.context.selected_objects:
    obj.select_set(False)

Add IK Constraints & Render

import bpy

def deselect_all():
    for obj in bpy.context.selected_objects:
        obj.select_set(False)

def add_constraint( arm, bname, tname, chain_len, position ):
    # get the bones
    bone = arm.pose.bones[bname]
    targ = arm.pose.bones[tname]

    # create a constraint
    con = bone.constraints.new('IK')
    con.target = arm
    con.subtarget = tname
    con.chain_count = chain_len

    # set the target position
    targ.location = position

    return con    

# switch to object mode
bpy.ops.object.mode_set(mode='OBJECT')

# select the armature    
deselect_all()
arm = bpy.data.objects['Armature']
#arm.select_set(True)

# switch to pose mode
bpy.ops.object.mode_set(mode='POSE')

c = add_constraint( arm, 'larm.L', 'hand_target.L', 3, (0.5,1.25,0) )
# uncomment to disable constraint
#c.mute = True

bpy.context.scene.render.filepath = '/home/james/Documents/blender/out.png'
bpy.ops.render.render(write_still=True)

Jan 12, 2019

PyQt5 + PyOpenGL Example

It took a little bit for me to find working example code for PyOpenGL+PyQt5. The following exposes a GLUT-like interface where you can provide callback functions for basic window, mouse and keyboard events.

# simple_viewer.py

from PyQt5 import QtWidgets
from PyQt5 import QtCore
from PyQt5 import QtGui
from PyQt5 import QtOpenGL

class SimpleViewer(QtOpenGL.QGLWidget):

    initialize_cb    = QtCore.pyqtSignal()
    resize_cb        = QtCore.pyqtSignal(int,int)
    idle_cb          = QtCore.pyqtSignal()
    render_cb        = QtCore.pyqtSignal()

    mouse_move_cb    = QtCore.pyqtSignal( QtGui.QMouseEvent )
    mouse_press_cb   = QtCore.pyqtSignal( QtGui.QMouseEvent )
    mouse_release_cb = QtCore.pyqtSignal( QtGui.QMouseEvent )
    mouse_wheel_cb   = QtCore.pyqtSignal( QtGui.QWheelEvent )

    key_press_cb     = QtCore.pyqtSignal( QtGui.QKeyEvent )
    key_release_cb   = QtCore.pyqtSignal( QtGui.QKeyEvent )

    def __init__(self, parent=None):
        self.parent = parent
        QtOpenGL.QGLWidget.__init__(self, parent)
        self.setMouseTracking(True)

    def mouseMoveEvent( self, evt ):
        self.mouse_move_cb.emit( evt )

    def mousePressEvent( self, evt ):
        self.mouse_press_cb.emit( evt )

    def mouseReleaseEvent( self, evt ):
        self.mouse_release_cb.emit( evt )

    def keyPressEvent( self, evt ):
        self.key_press_cb.emit(evt)

    def keyReleaseEvent( self, evt ):
        self.key_release_cb.emit(evt)

    def initializeGL(self):
        self.initialize_cb.emit()

    def resizeGL(self, width, height):
        if height == 0: height = 1
        self.resize_cb.emit(width,height)

    def paintGL(self):
        self.render_cb.emit()

And here is a basic example using it:

"""About the simplest PyQt OpenGL example with decent interaction"""
import sys

from OpenGL.GL import *
from OpenGL.GLU import *

from simple_viewer import SimpleViewer

width = 800
height = 600
aspect = width/height

def resize( w, h ):
    width = w
    height = h
    aspect = w/h
    glViewport( 0, 0, width, height )

def initialize():
    glEnable(GL_DEPTH_TEST)
    glClearColor( 0.7, 0.7, 1.0, 0.0 )

def render():
    glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT )

    glMatrixMode( GL_PROJECTION )
    glLoadIdentity()
    gluPerspective( 45.0, aspect, 0.1, 10.0 )

    glMatrixMode( GL_MODELVIEW )
    glLoadIdentity()
    gluLookAt( 0.0, 2.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0 )

    glPointSize(5.0)
    glLineWidth(5.0)
    glBegin(GL_LINES)
    glColor3f(  1.0, 0.0, 0.0 )
    glVertex3f( 1.0, 0.0, 0.0 )
    glVertex3f( 0.0, 0.0, 0.0 )
    glColor3f(  0.0, 1.0, 0.0 )
    glVertex3f( 0.0, 1.0, 0.0 )
    glVertex3f( 0.0, 0.0, 0.0 )
    glColor3f(  0.0, 0.0, 1.0 )
    glVertex3f( 0.0, 0.0, 1.0 )
    glVertex3f( 0.0, 0.0, 0.0 )
    glEnd()

def mouse_move( evt ):
    print('Mouse move {}: [{},{}]'.format(evt.button(),evt.x(),evt.y()) )

def mouse_press( evt ):
    print('Mouse press {}: [{},{}]'.format(evt.button(),evt.x(),evt.y()) )

def mouse_release( evt ):
    print('Mouse release {}: [{},{}]'.format(evt.button(),evt.x(),evt.y()) )

def key_press( evt ):
    print('Key press {}'.format(evt.key()) )

def key_release( evt ):
    print('Key release {}'.format(evt.key()) )

# create the QApplication
app = SimpleViewer.application()

# set up the display
viewer = SimpleViewer()
viewer.resize_cb.connect( resize )
viewer.initialize_cb.connect( initialize )
viewer.render_cb.connect( render )

# keyboard & mouse interactions
viewer.key_press_cb.connect( key_press )
viewer.key_release_cb.connect( key_release )
viewer.mouse_press_cb.connect( mouse_press )
viewer.mouse_release_cb.connect( mouse_release )
viewer.mouse_move_cb.connect( mouse_move )

# resize the window
viewer.resize( width, height )
viewer.show()

# main loop
try:
    sys.exit(app.exec_())
except SystemExit:
    pass